Sliding-strip microfluidic device enables ELISA on paper

نویسندگان

  • Mohit S. Verma
  • Maria-Nefeli Tsaloglou
  • Tyler Sisley
  • Dionysios Christodouleas
  • Austin Chen
  • Jonathan Milette
  • George M. Whitesides
چکیده

This article describes a 3D microfluidic paper-based analytical device that can be used to conduct an enzyme-linked immunosorbent assay (ELISA). The device comprises two parts: a sliding strip (which contains the active sensing area) and a structure surrounding the sliding strip (which holds stored reagents-buffers, antibodies, and enzymatic substrate-and distributes fluid). Running an ELISA involves adding sample (e.g. blood) and water, moving the sliding strip at scheduled times, and analyzing the resulting color in the sensing area visually or using a flatbed scanner. We demonstrate that this device can be used to detect C-reactive protein (CRP)-a biomarker for neonatal sepsis, pelvic inflammatory disease, and inflammatory bowel diseases-at a concentration range of 1-100ng/mL in 1000-fold diluted blood (1-100µg/mL in undiluted blood). The accuracy of the device (as characterized by the area under the receiver operator characteristics curve) is 89% and 83% for cut-offs of 10ng/mL (for neonatal sepsis and pelvic inflammatory disease) and 30ng/mL (for inflammatory bowel diseases) CRP in 1000-fold diluted blood respectively. In resource-limited settings, the device can be used as a part of a kit (containing the device, a fixed-volume capillary, a pre-filled tube, a syringe, and a dropper); this kit would cost ~ $0.50 when produced in large scale (>100,000 devices/week). This kit has the technical characteristics to be employed as a pre-screening tool, when combined with other data such as patient history and clinical signs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple, low cost MHz-order acoustomicrofluidics using aluminium foil electrodes.

It is now possible to circumvent costly and complex cleanroom fabrication procedures to produce MHz-order acoustically-driven microfluidic platforms through the use of electrode strips cut simply from kitchen aluminium foil and pressed against piezoelectric substrates. Cleanroom deposition, lithographic patterning, and etching are entirely avoided in favor of this cut-and-place technique, which...

متن کامل

Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration.

This paper described a convenient semiquantitative method for colorimetric detection of protein with self-calibration integrated on the test strip. Hydrophilic paper was employed as microfluidic device for running colorimetric assay, tree-shaped design was developed to ensure uniform microfluidic flow for multiple branches. The approach was validated with bovine serum albumin (BSA) colorimetric...

متن کامل

Development of Microfluidic Device with Movable Electrode for Electrical Impedance Measurement on the Actively Compressed Single Cell

ABSTRACT We develop a microfluidic device which can measure the electrical properties of the actively compressed cell. When compared with the previous passive cell compression device, the proposed microfluidic device can provide the active cell compression via the movable(sliding) electrode. Cell’s direct contact with the electrodes can reduce the noise and produce the pure physiological inform...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices.

We present a facile approach for the fabrication of low-cost surface biomicrofluidic devices on superhydrophobic paper created by drop-casting a fluoroacrylic copolymer onto microtextured paper. Wettability patterning is performed with a common household printer, which produces regions of varying wettability by simply controlling the intensity of ink deposited over prespecified domains. The pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2018